
Key Aspects Augmentation of Vulnerability
Description based on Multiple Security Databases

Hao Guo1, Zhenchang Xing2, Sen Chen1∗, Xiaohong Li1∗, Yude Bai1, Hu Zhang3
1College of Intelligence and Computing, Tianjin University, Tianjin, China

2Research School of Computer Science, Australian National University and Data61 CSIRO, Australia
3State Grid Customer Service Center, Tianjin, China

{haoguo, senchen, xiaohongli, baiyude}@tju.edu.cn, zhenchang.xing@anu.edu.au

Abstract—Common Vulnerabilities and Exposures (CVE) is
one of the most influential security databases. With the contin-
uous disclosure of security vulnerabilities, the characteristics of
them are documented as vulnerability reports, and it is discovered
that their impact on computer systems is increasing. However,
as our research continues to deepen, we find that the current
lack of key aspects of CVE description is more serious than
before. In response to this situation, our research focuses on
how to correctly and completely extract key aspect descriptions
from various security vulnerability databases to supplement
the CVE reports. First, we fetch almost all of semi-structured
vulnerability reports from the CVE, Security Focus, and IBM
X-Force Exchange databases before November 2020. We then
propose a customized NER (Named entity recognition) method
based on deep neural networks to extract six key aspects from
unstructured descriptions. Finally, we use the corresponding
security vulnerability reports in other vulnerability databases
to complete the missing key aspects in the correlated CVE
description. We conduct sampling surveys on various aspects
of this information, and verify the accuracy of extracting key
aspects, and find that our method can extract key information
from vulnerability descriptions. To demonstrate the usefulness of
key aspects augmentation, after completing the missing affected
product, root cause, attacker type, attack vector, impact, and vul-
nerability type in the CVE description, we verify the effectiveness
of completing the key aspects of the vulnerability in predicting
the severity of the security vulnerability.

Index Terms—CVE, Vulnerability information completeness,
Vulnerability description, Neural network

I. INTRODUCTION

Security vulnerabilities are constantly being discovered and

disclosed [1]–[4]. With the development of computer systems

and software, they continue to appear, discovered by security

researchers and recorded in files. Once these vulnerabilities are

exploited, they will bring huge security risks and damage to the

systems. Common Vulnerabilities and Exposures (CVE) [5]

is a list of entries, each entry contains an identification

number, vulnerability description and reference list, and other

information. Many security products and services use at least

one known public vulnerability database (including the US

National Vulnerability Database (NVD) [6], IBM X-Force

Exchange [7], and SecurityFocus [8]) as a reference. Among

these databases, CVE is the most widely-used in the current

security research field. At present, researchers use CVE as

∗Sen Chen and Xiaohong Li are the corresponding authors.

Fig. 1: Description of CVE-2019-0628 in different security vulnera-
bility databases

a public database and accept security researchers to submit

security vulnerabilities discovered by themselves.

In the CVE official vulnerability submission guidelines, the

extended description should at least describe the following six

key aspects in detail: vulnerability type or root cause, affected

product (or vendor component, if applicable), attacker type,

attack vector, and impact. These key aspects each describe

different dimensions of information about security vulner-

abilities, and each key aspect is important. These six key

aspects describe the vulnerability from multiple perspectives

such as the abstraction of the security vulnerability, the cause

of the vulnerability, the product version and the part where

the vulnerability occurs, the form of exploitation, the method

of exploitation, and the consequences of the vulnerability.

SecurityFocus [8] and IBM X-Force Exchange [7] are pro-

fessional vulnerability security databases, which have similar

functions to CVE. These two vulnerability databases con-

tain most of the vulnerabilities that appear in CVE. These

databases have their own evaluation standards for security

vulnerabilities, and the key aspects of the vulnerabilities

described are similar to CVE. After investigated SecurityFo-

cus [8] and IBM X-Force Exchange [7], we found that there

are 99,377 Bugtraq-ids in SecurtiyFocus and 120,879 X-Force

vulnerabilities in IBM X-Force Exchange. The same as CVE,

1020

2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC)

978-1-6654-2463-9/21/$31.00 ©2021 IEEE
DOI 10.1109/COMPSAC51774.2021.00138

20
21

 IE
EE

 4
5t

h
A

nn
ua

l C
om

pu
te

rs
, S

of
tw

ar
e,

 a
nd

 A
pp

lic
at

io
ns

 C
on

fe
re

nc
e

(C
O

M
PS

A
C

) |
 9

78
-1

-6
65

4-
24

63
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
O

M
PS

A
C

51
77

4.
20

21
.0

01
38

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 05:07:23 UTC from IEEE Xplore. Restrictions apply.

the information contained in these reports is composed of the

six aspects mentioned above but the focus is different. Among

these incomplete CVE reports, over 78% of the vulnerability

reports have at least one related vulnerability description in

the IBM X-Force Exchange and SecurityFocus databases.

The key aspects of vulnerabilities in these different security

databases are described differently, and a large amount of

information is complementary, which shows that our work is

highly feasible. Fig. 1 shows the description of the CVE-2019-

0628 vulnerability in each of the three vulnerability databases.

From the figure, we can see that the key aspects of the

vulnerability described in the three databases are not the same

completely. Each of the three vulnerability databases does not

fully describe the six key aspects of the vulnerability, but the

key aspects in these databases are complementary.

The inconsistencies in the key aspects of these security

databases have created prerequisites for our augmentation of

the key aspects. In this paper, we propose a customized NER

(Named entity recognition) method based on deep neural net-

works to extract descriptions of CVE and other vulnerability

databases and supplement the CVE data with key aspects of

vulnerabilities extracted from corresponding security vulner-

ability descriptions in other security vulnerability databases.

For the description of CVE, it is very helpful to describe the

details of CVE as much as possible for the research and use of

vulnerabilities. After that, we studied the lack of key aspects

of each vulnerability database, explored the characteristics and

shortcomings of each vulnerability database. We calculated

how comprehensive the three vulnerability databases can aug-

ment CVE information. Finally, we conducted experiments

using artificially concealed CVEs in one of the six key areas,

using augmented CVEs and using CVE source data to predict

the performance of CVE severity levels (CVSS). Experiments

show that our method can help the security vulnerability

severity prediction task well. These key aspects in the database

are valuable resources. How to use them to supplement the

deficiencies in CVE is one of the focuses of our research on

CVE description.

In summary, this paper make the following contributions:

• Our work is the first to focus on the relationship of

vulnerability databases, and explore the similarities and

differences between multiple security vulnerabilities.

• We design a neural network-based model to automatically

extract the key aspects of multiple vulnerability databases

and use them to complete the missing information in

the CVE. We also conduct experiments to compare the

effectiveness of different model design variants.

• We further conduct experiments to explore the improve-

ment of our method on the task of vulnerability severity

prediction and the impact of the lack of key aspects on

this task. Experiments show that this method can improve

the effectiveness of vulnerability severity prediction task.

II. PRELIMINARY

1) Vulnerability type is an abstraction of vulnerabilities,

usually identified as one of the “Common Weakness Enumera-

Fig. 2: Overview of our approach

tion” (CWE) [9]. When submitting security vulnerabilities, the

submitter needs to choose to indicate the vulnerability type,

but if the vulnerability type of the vulnerability is not in the

selection list or the submitter does not know, you can choose

“Other” or “Unknown”. 2) Root cause indicates the cause

of the security vulnerabilities, which can be program design,

environment configuration, value or condition verification, and

errors in the system operation process, or other aspects. 3) Af-
fected product identifies certain versions of software products

affected by vulnerabilities and software product components

that have problems. Product components can be environment

variables, certain modules, files, functions or executable files

in the software. When submitting a new CVE, the reporter

must provide the affected product and version as well as the

product supplier, so there will be no lack of such informa-

tion. 4) Attacker type is an abstraction of an attacker who

exploits a security vulnerability. As an optional field, the CVE

request site provides 5 selection mechanisms: Authenticated,

local, remote, physical, and context-sensitive. Although the

vulnerability discoverer can leave this field unspecified or

select other fields when submitting the vulnerability report,

they may mention the type of attacker in the vulnerability

description. 5) Impact represents what an attacker can achieve

by exploiting this vulnerability and the impact on software

products. The CVE request site provides 4 common choices:

Code execution, information leakage, denial of service, and

privilege escalation. This key aspect is a phenomenon that

is an external manifestation of security vulnerabilities and is

easy to be observed, so Impact is not missing much in the

vulnerability report. 6) Attack vector describes the method and

medium of exploiting the vulnerability. For example, to exploit

the vulnerability, a carefully crafted JPEG file must be opened,

or a malicious query path must be used.

III. APPROACH

A. Approach Overview

To complement the key aspects missing in CVE, we chose

SecurityFocus and IBM X-Force Exchange, which are widely

recognized by the industry. We crawled the relevant data from

the official websites of these databases. As shown in Fig. 2,

we convert these vulnerability descriptions into continuous

tokens and label these tokens. After extracting the vulnerability

description, we use the Skip-gram model to train the word

1021

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 05:07:23 UTC from IEEE Xplore. Restrictions apply.

embedding on the crawled vulnerability description corpus.

The output of the training word embedding is the word vector

dictionary of each word in the vocabulary of the crawled

vulnerability descriptions. After that, we used a customized

NER (Named entity recognition) method based on deep neural

networks to extract six key aspects of these databases: affected

product, vulnerability type, root cause, attacker type, attack

vector, and impact. Finally, we complete the CVE description

using key aspects missing from the CVE included in Securi-

tyFocus and IBM X-Force Exchange.

Security Vulnerability Dataset. The CVE list can be down-

loaded from the CVE official website [5]. The data of Secu-

rityFocus and IBM X-Force Exchange can also be obtained

from their official websites. Then we need to convert these

descriptions into continuous tokens and label them. The CRF

(Conditional Random Fields) layer can add some constraints

to the last predicted label to ensure that the predicted label is

legal. In the training process of training data, these constraints

can be automatically learned through the CRF layer. These

constraints can be: 1) The first word in the six key aspects

always starts with the label “B-”, and “I-” indicates the middle

word. 2) For labels “B-label1 I-label2 I-label3 I-...”, label1,

label2, label3 should belong to the same type of entity. For

example, “B-Impact I-Impact” is a legal sequence, but “B-

Impact I-Attack vector” is an illegal tag sequence. 3) The

token label that does not belong to the six key aspects

is always “O”. In this work, we randomly selected 3,000

vulnerability entries from the vulnerability database released

from January 1999 to November 2020. We convert those data

into a continuous sequence and then label them.

B. Key Aspects Extraction

1) Input and Representation: From the perspective of the

model, the named entity recognition (NER) [10] problem is

actually a sequence labeling problem. The sequence labeling

problem means that the input of the model is a sequence,

including text, time, etc., and the output is also a sequence. For

each unit of the input sequence, a specific label is an output.

Tokens in vulnerability description are discrete symbols that

need to be represented as vectors in NLP tasks. Inspired by

many successful applications of word embedding in general

and domain text [11]–[13], word embedding is a real-valued,

low-dimensional word vector that captures lexical rich syntac-

tic and semantic characteristics, so we decided to use word

embedding to represent tokens in vulnerability descriptions.

Our corpus has the vocabulary size of 62,245. Continuous

Skip-gram model learns word embeddings that are good at

predicting the surrounding words with a center word. The

objective function of the model is to maximize the sum of

log probabilities of the surrounding words wi+j in a context

window of size 2k + 1 (k = 5 in this work) conditioned on

the center word wi in the window.

The output of the continuous Skip-gram model is a dic-

tionary of words. Each word is associated with a vector

representation w ∈ Rd where d is the word embedding

dimension. Following the experiments on word embedding

•••• •••• •••• ••••

1h 2h 3h 4h

4h3h2h1h

Fig. 3: Neural network model structure

dimension in Han et al. [11], we set d at 100 in this work.

The words in the dictionary may not cover all words in the

vulnerability description. We follow the common practice to

deal with those out-of-vocabulary words [12], i.e., randomly

initialize the corresponding word vectors.

2) Customized NER based on Deep Learning: The vul-

nerability description is concise, but the scope contains rich

and diverse vulnerability semantic information. In addition,

considering that some special symbols also have certain se-

mantics, it will increase the complexity of feature extrac-

tion. Our task requires a complete sequence function. Since

the vulnerability description usually contains 1-2 sentences

with rich information, we leverage BiLSTM (Bidirectional

LSTM)+CharCNN+CRF (Conditional Random Field) to cap-

ture the structure and characteristics of the various information

we need. The vulnerability description token sequence is

given. First, our method finds the vector describing each tag

in the sentence in the word embedding dictionary, and then

connects it to the vulnerability description vector.

Neural network has become a model that can effectively

handle many NLP tasks. We convert the security vulnerability

description information extraction into a sequence labeling

task. The label is mapped from a discrete one-hot represen-

tation to a low-dimensional space and then the embedded

sentence sequence is input to BiLSTM, and then the neural

network automatically extracts the features and uses Softmax

to predict each token label.

As shown in Fig. 3, we trained a BiLSTM+CharCNN+CRF

model to solve the sequence labeling problem in the key

aspects of CVE description. We perform batch training. The

length of the word vector is 100, the BiLSTM layer is 1, the

learning rate is set to 0.012, and the subnet parameters are

updated by using the Adam optimization method [14]. We

convert the labeled CVE description into a word sequence

(including words, hollow Brackets, parentheses, dots, etc.), and

then mark each unit in the sequence according to the extracted

CVE information. We conducted several experiments to study

the performance of the proposed BiLSTM+CharCNN+CRF

architecture and compared it with other baseline methods.

1022

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 05:07:23 UTC from IEEE Xplore. Restrictions apply.

We highlight that CharCNN can capture character-level

features well. In this work, CharCNN includes a character

representation layer, a maximum pooling layer, a convolutional

layer and a Char Embedding layer. Taking as input the

word embedding representation of a vulnerability description

D = (w1, w2, · · · , wn), where wi is the word embedding

of the ith word and n is the total number of words in the

description, a standard LSTM recursively computes a hidden

vector sequence h = (h1, h2, · · · , hn) in one direction. A

Bi-directional LSTM processes the input sequence in both

forward and backward direction with two standard LSTMs,

respectively. In this work, we develop a BiLSTM with c

(c = 100) LSTM cells which contain a forward LSTM
−−→
lstmf

network that reads the input from w1 to wn, and a backward

LSTM
←−−
lstmb that reads from wn to w1:

−→
h i =

−−→
lstmf (wi), i ∈

[1, n] ,
−→
h i ∈ Rc,

←−
h i =

←−−
lstmb(wi), i ∈ [n, 1] ,

←−
h i ∈ Rc. The

parameters of
−−→
lstmf and

←−−
lstmb will be learned during model

training. We obtain the hidden vector hi for a given word wi by

concatenating the forward hidden vector
−→
h i and the backward

hidden vector
←−
h i, i.e., hi =

−→
h i ⊕←−h i (hi ∈ R2c). hi is the

output vector of the BiLSTM for the input word wi, which

encodes both the preceding and succeeding sentence context

centered around wi. The CRF layer can add constraints to the

last predicted label to ensure that the predicted label is legal.

In the training process of training data, these constraints can

be automatically learned through the CRF layer.

Finally, we can automatically mark a continuous sequence

belonging to each key aspect in a vulnerability description,

thereby extracting key aspects from the vulnerability.

IV. EXPERIMENTS

We conduct a series of experiments to answer to the

following three research questions:

• RQ1: (Efficiency of neural network): How do different

model architectures and neural network designs affect the

extraction performance of key aspects?

• RQ2: (Key aspects missing from the security vulnera-
bility databases): How many key aspects are missing from

CVE, SecurityFocus, and IBM X-Force Exchange? How

many key aspects are missing in the augmented CVE?

• RQ3: (Advantages of CVE augmentation): Does the

augmentation in key aspects enhance the prediction accuracy

of the severity of security vulnerabilities?

A. Experiment Setup

1) Evaluation Metrics: We use Precision, Recall, and F1-

score that are commonly used to evaluate the effectiveness of

multi-class classification in the literature. In the exact matching

process, the entity category and boundary range need to be

predicted. Only when these two parts are matched successfully,

the prediction is correct, otherwise, it is a prediction error.

Since F1-score conveys the balance between the precision and

the recall, we use F1-score as the main evaluation metric.

TABLE I: Performance on CVE

Affected Impact Vulnerability Root Attack Attacker
product type cause vector type

Pre

1-L BiLSTM+CRF 0.9239 0.8177 0.9598 0.9291 0.7218 0.9010
2-L BiLSTM+CRF 0.9230 0.8242 0.9592 0.9311 0.7576 0.9026

1-L BiLSTM 0.8101 0.5230 0.8328 0.7205 0.5085 0.8042
1-L BiLSTM+CNN 0.8278 0.5490 0.8203 0.8611 0.5612 0.8102

1-L BiLSTM+CNN+CRF 0.9317 0.8533 0.9549 0.9151 0.7250 0.8923

Rec

1-L BiLSTM+CRF 0.9724 0.8632 0.9593 0.9221 0.9385 0.9690
2-L BiLSTM+CRF 0.9771 0.8411 0.9674 0.9210 0.9221 0.9662

1-L BiLSTM 0.9209 0.6886 0.8232 0.8312 0.8607 0.9669
1-L BiLSTM+CNN 0.9316 0.7215 0.8483 0.9123 0.8648 0.9655

1-L BiLSTM+CNN+CRF 0.9766 0.8862 0.9774 0.9221 0.9508 0.9711

F1

1-L BiLSTM+CRF 0.9495 0.8445 0.9596 0.9259 0.8165 0.9338
2-L BiLSTM+CRF 0.9493 0.8326 0.9632 0.9260 0.8218 0.9333

1-L BiLSTM 0.8620 0.6147 0.8280 0.7719 0.6393 0.8781
1-L BiLSTM+CNN 0.8767 0.6239 0.8341 0.8860 0.6806 0.8810

1-L BiLSTM+CNN+CRF 0.9536 0.8694 0.9660 0.9186 0.8227 0.9324

TABLE II: Performance on SecurityFocus

Affected Impact Vulnerability Root Attack Attacker
product type cause vector type

Pre

1-L BiLSTM+CRF 0.9365 0.9410 0.9372 0.8500 0.7500 0.9728
2-L BiLSTM+CRF 0.9346 0.9399 0.9269 0.8395 0.5116 0.9790

1-L BiLSTM 0.9184 0.8221 0.9111 0.6739 0.4043 0.9284
1-L BiLSTM+CNN 0.9309 0.8329 0.8856 0.6865 0.6000 0.9496

1-L BiLSTM+CNN+CRF 0.9245 0.9067 0.9220 0.8831 0.6757 0.9647

Rec

1-L BiLSTM+CRF 0.9819 0.9381 0.9586 0.9067 0.7500 0.9699
2-L BiLSTM+CRF 0.9839 0.9428 0.9710 0.9067 0.7857 0.9849

1-L BiLSTM 0.9758 0.9074 0.9545 0.8267 0.6786 0.9759
1-L BiLSTM+CNN 0.9778 0.9257 0.9572 0.8633 0.7500 0.9639

1-L BiLSTM+CNN+CRF 0.9879 0.9598 0.9793 0.9067 0.8930 0.9880

F1

1-L BiLSTM+CRF 0.9587 0.9395 0.9478 0.8774 0.7500 0.9713
2-L BiLSTM+CRF 0.9566 0.9414 0.9484 0.8718 0.6197 0.9820

1-L BiLSTM 0.9462 0.8589 0.9323 0.7425 0.5067 0.9515
1-L BiLSTM+CNN 0.9538 0.8768 0.9321 0.7556 0.6667 0.9567

1-L BiLSTM+CNN+CRF 0.9552 0.9323 0.9498 0.8947 0.7692 0.9762

2) Setting of Model Training: We implement the pro-

posed neural network in TensorFlow. All security vulnerability

databases are trained by using the proposed model. Specif-

ically, we train each model for 256 iterations with a batch

size of 128, set learning rate at 0.0012, and use Adam [14] as

the optimizer. All experiments run on an NVIDIA Tesla M40

GPU machine.

B. Efficiency of Neural Network

Motivation. Extracting the key aspects of vulnerability de-

scriptions is the first step in our work, which is very important

for the next experiments. We want to explore the influence

of different neural network models on the extraction of key

aspects of vulnerability in order to find the model that is

most suitable for our work. We also want to know the impact

of CharCNN, CRF, and BiLSTM layers on our NER based

network. For the three vulnerability databases, the impact of

the model may also be different. We want to study the impact

of these design schemes and combine their performance on the

three vulnerability databases to determine the most effective

design of the neural network.

Approach. For each key aspect of the three security vul-

nerability databases, we use five different models to explore

the impact of models on our work. We conduct a series of

comparative experiments (see in Table I-III) to explore the

number of BiLSTM layers, whether there is a CharCNN

layer, whether there is a CRF layer, and the effect of layer

combination. We apply these neural network models to the key

1023

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 05:07:23 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Performance on IBM X-Force Exchange

Affected Impact Vulnerability Root Attack Attacker
product type cause vector type

Pre

1-L BiLSTM+CRF 0.9242 0.8904 0.9135 0.7392 0.8613 0.8098
2-L BiLSTM+CRF 0.9211 0.8895 0.9133 0.7639 0.8615 0.8009

1-L BiLSTM 0.8490 0.8206 0.8419 0.6019 0.8013 0.7398
1-L BiLSTM+CNN 0.8996 0.8804 0.8711 0.7025 0.8214 0.7816

1-L BiLSTM+CNN+CRF 0.9351 0.8911 0.9103 0.7401 0.8496 0.8178

Rec

1-L BiLSTM+CRF 0.9778 0.9197 0.9483 0.8648 0.9394 0.8697
2-L BiLSTM+CRF 0.9770 0.9267 0.9459 0.8673 0.9403 0.8529

1-L BiLSTM 0.9150 0.8665 0.8568 0.7673 0.8411 0.7726
1-L BiLSTM+CNN 0.9450 0.8999 0.9059 0.8197 0.8703 0.8236

1-L BiLSTM+CNN+CRF 0.9650 0.9199 0.9446 0.8471 0.9303 0.8726

F1

1-L BiLSTM+CRF 0.9550 0.9016 0.9263 0.7863 0.9003 0.8326
2-L BiLSTM +CRF 0.9515 0.8976 0.9233 0.7773 0.9007 0.8301

1-L BiLSTM 0.8680 0.8371 0.8462 0.6671 0.8295 0.7519
1-L BiLSTM+CNN 0.9330 0.8899 0.8863 0.7254 0.8602 0.8042

1-L BiLSTM+CNN+CRF 0.9511 0.9023 0.9259 0.7773 0.9003 0.8376

aspects extraction work of the three vulnerability databases.

CharCNN is an effective method to extract information (such

as the prefix or suffix of a word) from the characters of the

word and encode it into a neural representation.

Results. As shown in Tables I-III, we can see that our NER

model achieves great performance, and the model with the best

comprehensive effect is 1-layer BiLSTM+CharCNN+CRF.

The output of BiLSTM is connected to the input of the

CRF layer. Unlike models that can consider long-term context

information (such as LSTM), CRF pays more attention to the

linear weighted combination of local features of the entire

sentence (scanning the entire sentence through a feature tem-

plate). In order to train the neural network model to extract the

features of related sequences from the vulnerability description

sequence and accurately label the sentence sequence, we

input a large number of crawling vulnerability description

sequences and the corresponding label of each tag in the

sequence into the model. The CRF model has obviously

improved the effectiveness of predicting relatively inaccurate

aspects, and the CharCNN model also has a good effect

on feature extraction. The addition of the BiLSTM model

has a counterproductive effect. Our model is relatively weak

in predicting the Attack vector in CVE and SecurityFocus,

Impact in CVE, and Root cause in SecurityFocus. In other

key aspects, our model achieves significant performance.

C. Key Aspects Missing from Security Vulnerability Databases

Motivation. Understanding the key aspects of security vul-

nerability descriptions is a prerequisite for our other security

vulnerability research work. The vulnerability description in

the security vulnerability database is mainly composed of

six key aspects: affected product, vulnerability type, root

cause, attacker type, attack vector, and impact. The key aspect

missing from the vulnerability description is the premise to

help us understand the advantages and disadvantages of the

security vulnerability database. We want to explore how many

key aspects are missing from CVE, SecurityFocus, and IBM

X-Force Exchange, and how many key aspects of CVE after

augmentation are missing. In this RQ, we want to understand

the degree of missing in each security vulnerability database

and the augmented CVE.

TABLE IV: Missing aspects in the security vulnerability databases

Affected Impact Vulnerability Root Attack Attacker
product type cause vector type

CVE - 0.06 0.56 0.85 0.38 0.36
SecurityFocus - 0.02 0.23 0.58 0.83 0.55

IBM X-Force Exchange - 0.02 0.21 0.51 0.31 0.33
Augmented CVE - - 0.17 0.31 0.23 0.19

Approach. We categorize the description data in the three

vulnerability databases according to the corresponding vul-

nerabilities to facilitate our completion of CVE and statistics-

related information. After extracting the key aspects from the

three vulnerability databases, the number of key aspects in the

three vulnerability databases and the percentage of missing

key aspects are calculated. We use the data extracted from the

other two databases to complete the missing key aspects of

CVE, and in this case, calculate the missing rate and number

of key aspects again on the completed CVE data set.

Results. As shown in Table IV, in CVE, SecurityFocus, IBM

X-Force Exchange, there is almost no missing of affected

product information, and the missing rate of Impact is rela-

tively small. The difference is that for the vulnerability types,

there are more missing rate in the CVE database, reaching

56%, while relatively few in IBM X-Force Exchange and

SecurityFocus, about 23% and 21%, respectively. For attack

vectors, SecurityFocus loses the most, reaching 83%, while

the attacker type is also as high as 55%. In general, the lack

of CVE data is obviously alleviated after completion. After the

completion, there are basically no missing cases in the impact.

Compared with the previous 56% and 85%, the vulnerability

type and root cause missing rate after the completion are

reduced to 17% and 31%.

D. Advantages of CVE Augmentation

Motivation. Han et al. [11] proposed a neural network-based

model to predict the severity of vulnerabilities. The input of the

prediction model is the description of the vulnerability, and the

output is the corresponding severity of the vulnerability. For a

long time, we have been exploring the impact of augmentation

of key aspects on other security vulnerability research work.

Does the augmentation in key aspects enhance the prediction

of the severity of security vulnerabilities? Combining the

comprehensive factors of all aspects, if we want to further

study this aspect, we need to conduct a series of experiments

to solve this problem. In this RQ, we want to know how

the lack of vulnerability information affects the prediction of

vulnerability severity.

Approach. In order to verify the impact of the lack of key

aspects on predicting the severity of CVE, we designed 8

experiments, which were used in ablation studies. In this RQ,

a certain aspect of ablation means that we completely ignore

the ablation aspect in the input stage of the model, even if the

CVE describes the ablation aspect, as shown in Fig. 4. We use

the method proposed by Han et al. [11] to predict the severity

level of security vulnerabilities. We use 1 layer CNN as the

neural network model for this prediction work and divide the

vulnerability severity into four levels: low, medium, high, and

1024

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 05:07:23 UTC from IEEE Xplore. Restrictions apply.

TABLE V: Performance on vulnerability severity prediction

Augmented Original Ablation of Ablation of Ablation of Ablation of Ablation of Ablation of
CVE CVE affected product impact Vul-Type root cause attack vector attacker type

Pre 0.796 0.747 0.681 0.711 0.729 0.735 0.715 0.710
Re 0.795 0.749 0.688 0.720 0.728 0.729 0.715 0.709
F1 0.792 0.745 0.682 0.713 0.723 0.726 0.712 0.703

Fig. 4: Data comparison

critical. The input of the prediction model is the description

of the CVE vulnerability, and the output is the severity level

of the vulnerability. We cut out six key aspects in the CVE

data set one by one to predict the severity of CVE and observe

the impact of the lack of each key aspect on the prediction

work. In addition to those six data sets, there are the original

CVE data set and the expanded CVE data set. We use the

control variable method to compare the experiments on the

other seven data sets with those on the original CVE data set.

We use the augmented CVE data set to predict the severity

of the vulnerability to verify the practicability of our method.

We perform 10-fold cross-validation in all experiments.

Results. Table V shows our experimental results. We can

see that the vulnerability information completion can improve

the prediction of vulnerability severity level, up about 4.7%.

Ablating root cause results in a relatively smaller drop (about

1.9%) in F1. For predicting vulnerability severity, ablating

affected product have the most significant impact, resulting

in a 6.3% drop in F1. Other aspects of ablation decreased

by approximately 2.2%-4.2%. It can be seen from the results

that our work does have an impact on the prediction of CVE

severity grade, and has a good promotion effect.

V. RELATED WORK

Neural networks have been widely-used in natural language

processing [15]. A lot of research have been done in predicting

vulnerable or error-prone components [16], or assessing how

the system is more vulnerable [17]. They used various features,

including software indicators, developer activity indicators,

and code structure [18]. The difference in our work is that we

analyze the vulnerability text and understand the relationship

between different aspects in the vulnerability description.

VI. CONCLUSION

This paper studies the information integrity issues in the

vulnerability reports. We separately checked the severity of six

key aspects missing from the description of CVE, SecurityFo-

cus, and IBM X-Force Exchange: statistical affected product,

root cause, vulnerability type, attacker type, attack vector, and

impact. We proposed a customized NER method based on

deep neural networks to extract key aspects of vulnerability

descriptions and mitigate the missing information in the CVE

vulnerability reports. This method uses a neural network model

to extract important features from the aspect description and

captures the differences in various aspects of the vulnerability

descriptions. Our experiments have determined the most effec-

tive model design for the prediction tasks. We conclude that 1

layer BiLSTM+CharCNN+CRF achieves a better performance

in the alternative scheme. We believe that our method has the

ability to effectively reduce human efforts and time cost during

the updating iterations among different vulnerability databases

and facilities the vulnerability description-based works in the

future.

ACKNOWLEDGMENT

This work has partially been sponsored by the National

Science Foundation of China (No. 61872262).

REFERENCES

[1] S. Chen, L. Fan, G. Meng, T. Su, M. Xue, Y. Xue, Y. Liu, and L. Xu,
“An empirical assessment of security risks of global Android banking
apps,” in ICSE. IEEE Press, 2020.

[2] S. Chen, T. Su, L. Fan, G. Meng, M. Xue, Y. Liu, and L. Xu, “Are
mobile banking apps secure? what can be improved?” in ESEC/FSE.
ACM, 2018.

[3] X. Zhan, L. Fan, S. Chen, F. Wu, T. Liu, X. Luo, and Y. Liu, “Atvhunter:
Reliable version detection of third-party libraries for vulnerability iden-
tification in android applications,” in ICSE. IEEE Press, 2021.

[4] Z. Tang, K. Tang, M. Xue, Y. Tian, S. Chen, M. Ikram, T. Wang, and
H. Zhu, “iOS, your OS, everybody’s OS: Vetting and analyzing network
services of iOS applications,” in USENIX Security, 2020.

[5] C. MITRE, “Common vulnerabilities and exposures (cve),” https://cve.
mitre.org/, 2019, [Online; accessed 30-June-2019].

[6] ——, “National vulnerability database (nvd),” https://nvd.nist.gov/,
2017, [Online; accessed 21-January-2017].

[7] IBM, “Ibm x-force exchange,” https://exchange.xforce.ibmcloud.com/,
2019, [Online; accessed 30-June-2019].

[8] Symantec, “securityfocus,” https://www.securityfocus.com/, 2019, [On-
line; accessed 30-June-2019].

[9] CWE, “Common weakness enumeration (cwe),” http://cwe.mitre.org/,
2019, [Online; accessed 30-June-2019].

[10] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer,
“Neural architectures for named entity recognition,” in North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, 2016.

[11] Z. Han, X. Li, Z. Xing, H. Liu, and Z. Feng, “Learning to predict
severity of software vulnerability using only vulnerability description,”
in ICSME, 2017.

[12] X. Gong, Z. Xing, X. Li, Z. Feng, and Z. Han, “Joint prediction of
multiple vulnerability characteristics through multi-task learning,” in
ICECCS, 2019.

[13] L. Yuan, Y. Bai, Z. Xing, S. Chen, X. Li, and Z. Deng, “Predicting entity
relations across different security databases by using graph attention
network,” in In COMPSAC, 2021.

[14] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, 2014.

[15] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, “Deep contextualized word representations,” in CoRR,
vol. abs/1802.05365, 2018.

[16] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting
vulnerable software components,” in CCS, 2007.

[17] L. Wang, T. Islam, L. Tao, A. Singhal, and S. Jajodia, “An attack
graph based probabilistic security metric,” in Lecture Notes in Computer
Science, 2008.

[18] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indicators of
software vulnerabilities,” in TSE, 2011.

1025

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 05:07:23 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T20:27:55-0400
	Preflight Ticket Signature

