2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC) | 978-1-6654-2463-9/21/$31.00 ©2021 IEEE | DOIL: 10.1109/COMPSAC51774.2021.00138

2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC)

Key Aspects Augmentation of Vulnerability
Description based on Multiple Security Databases

Hao Guo?, Zhenchang XingQ, Sen Chen!*, Xiaohong Li'*, Yude Bail, Hu Zhang3
LCollege of Intelligence and Computing, Tianjin University, Tianjin, China
2Research School of Computer Science, Australian National University and Data61 CSIRO, Australia
3State Grid Customer Service Center, Tianjin, China
{haoguo, senchen, xiaohongli, baiyude} @tju.edu.cn, zhenchang.xing@anu.edu.au

Abstract—Common Vulnerabilities and Exposures (CVE) is
one of the most influential security databases. With the contin-
uous disclosure of security vulnerabilities, the characteristics of
them are documented as vulnerability reports, and it is discovered
that their impact on computer systems is increasing. However,
as our research continues to deepen, we find that the current
lack of key aspects of CVE description is more serious than
before. In response to this situation, our research focuses on
how to correctly and completely extract key aspect descriptions
from various security vulnerability databases to supplement
the CVE reports. First, we fetch almost all of semi-structured
vulnerability reports from the CVE, Security Focus, and IBM
X-Force Exchange databases before November 2020. We then
propose a customized NER (Named entity recognition) method
based on deep neural networks to extract six key aspects from
unstructured descriptions. Finally, we use the corresponding
security vulnerability reports in other vulnerability databases
to complete the missing key aspects in the correlated CVE
description. We conduct sampling surveys on various aspects
of this information, and verify the accuracy of extracting key
aspects, and find that our method can extract key information
from vulnerability descriptions. To demonstrate the usefulness of
key aspects augmentation, after completing the missing affected
product, root cause, attacker type, attack vector, impact, and vul-
nerability type in the CVE description, we verify the effectiveness
of completing the key aspects of the vulnerability in predicting
the severity of the security vulnerability.

Index Terms—CVE, Vulnerability information completeness,
Vulnerability description, Neural network

[. INTRODUCTION

Security vulnerabilities are constantly being discovered and
disclosed [1]-[4]. With the development of computer systems
and software, they continue to appear, discovered by security
researchers and recorded in files. Once these vulnerabilities are
exploited, they will bring huge security risks and damage to the
systems. Common Vulnerabilities and Exposures (CVE) [5]
is a list of entries, each entry contains an identification
number, vulnerability description and reference list, and other
information. Many security products and services use at least
one known public vulnerability database (including the US
National Vulnerability Database (NVD) [6], IBM X-Force
Exchange [7], and SecurityFocus [8]) as a reference. Among
these databases, CVE is the most widely-used in the current
security research field. At present, researchers use CVE as

*Sen Chen and Xiaohong Li are the corresponding authors.

Microsoft Windows could allow a local authenticated attacker
to obtain sensitive information,

an attacker could exploit this

vulnerability to obtain sensitive information and then use this
information to launch further attacks against the affected
system.

Ibm X-Force Exchange

Microsoft Windows is prone to a local information-disclosure

vulnerability. A local attacker can leverage this issue to

disclose sensitive information that may aid in further attacks.
SecurityFocus

An information disclosure vulnerability exists when -
Win32k component improperly provides kernel information,
aka '"Win32k Information Disclosure Vulnerability'.

CVE

Vulnerability type - Root cause
- Attack vector Impact

Affected product
Attacker type

Fig. 1: Description of CVE-2019-0628 in different security vulnera-
bility databases

a public database and accept security researchers to submit
security vulnerabilities discovered by themselves.

In the CVE official vulnerability submission guidelines, the
extended description should at least describe the following six
key aspects in detail: vulnerability type or root cause, affected
product (or vendor component, if applicable), attacker type,
attack vector, and impact. These key aspects each describe
different dimensions of information about security vulner-
abilities, and each key aspect is important. These six key
aspects describe the vulnerability from multiple perspectives
such as the abstraction of the security vulnerability, the cause
of the vulnerability, the product version and the part where
the vulnerability occurs, the form of exploitation, the method
of exploitation, and the consequences of the vulnerability.

SecurityFocus [8] and IBM X-Force Exchange [7] are pro-
fessional vulnerability security databases, which have similar
functions to CVE. These two vulnerability databases con-
tain most of the vulnerabilities that appear in CVE. These
databases have their own evaluation standards for security
vulnerabilities, and the key aspects of the vulnerabilities
described are similar to CVE. After investigated SecurityFo-
cus [8] and IBM X-Force Exchange [7], we found that there
are 99,377 Bugtrag-ids in SecurtiyFocus and 120,879 X-Force
vulnerabilities in IBM X-Force Exchange. The same as CVE,

978-1-6654-2463-9/21/$31.00 ©2021 IEEE
DOI 10.1109/COMPSAC51774.2021.00138
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 05:07:23 UTC from IEEE Xplore. Restrictions apply.

1020

the information contained in these reports is composed of the
six aspects mentioned above but the focus is different. Among
these incomplete CVE reports, over 78% of the vulnerability
reports have at least one related vulnerability description in
the IBM X-Force Exchange and SecurityFocus databases.
The key aspects of vulnerabilities in these different security
databases are described differently, and a large amount of
information is complementary, which shows that our work is
highly feasible. Fig. 1 shows the description of the CVE-2019-
0628 vulnerability in each of the three vulnerability databases.
From the figure, we can see that the key aspects of the
vulnerability described in the three databases are not the same
completely. Each of the three vulnerability databases does not
fully describe the six key aspects of the vulnerability, but the
key aspects in these databases are complementary.

The inconsistencies in the key aspects of these security
databases have created prerequisites for our augmentation of
the key aspects. In this paper, we propose a customized NER
(Named entity recognition) method based on deep neural net-
works to extract descriptions of CVE and other vulnerability
databases and supplement the CVE data with key aspects of
vulnerabilities extracted from corresponding security vulner-
ability descriptions in other security vulnerability databases.
For the description of CVE, it is very helpful to describe the
details of CVE as much as possible for the research and use of
vulnerabilities. After that, we studied the lack of key aspects
of each vulnerability database, explored the characteristics and
shortcomings of each vulnerability database. We calculated
how comprehensive the three vulnerability databases can aug-
ment CVE information. Finally, we conducted experiments
using artificially concealed CVEs in one of the six key areas,
using augmented CVEs and using CVE source data to predict
the performance of CVE severity levels (CVSS). Experiments
show that our method can help the security vulnerability
severity prediction task well. These key aspects in the database
are valuable resources. How to use them to supplement the
deficiencies in CVE is one of the focuses of our research on
CVE description.

In summary, this paper make the following contributions:

e Our work is the first to focus on the relationship of
vulnerability databases, and explore the similarities and
differences between multiple security vulnerabilities.

« We design a neural network-based model to automatically
extract the key aspects of multiple vulnerability databases
and use them to complete the missing information in
the CVE. We also conduct experiments to compare the
effectiveness of different model design variants.

o We further conduct experiments to explore the improve-
ment of our method on the task of vulnerability severity
prediction and the impact of the lack of key aspects on
this task. Experiments show that this method can improve
the effectiveness of vulnerability severity prediction task.

II. PRELIMINARY

1) Vulnerability type is an abstraction of vulnerabilities,
usually identified as one of the “Common Weakness Enumera-

Key aspects missing
from CVE

Affected
product

Attacker Attack
type vector
Root
/ cause / Impact /

NER based on
deep learning

Vul-Type

Vulnerability
specific
word

Labeling training data

Buffer overflow in Solaris 7 embedding
1p allows local users to
gain root privileges via

Fig. 2: Overview of our approach

tion” (CWE) [9]. When submitting security vulnerabilities, the
submitter needs to choose to indicate the vulnerability type,
but if the vulnerability type of the vulnerability is not in the
selection list or the submitter does not know, you can choose
“Other” or “Unknown”. 2) Root cause indicates the cause
of the security vulnerabilities, which can be program design,
environment configuration, value or condition verification, and
errors in the system operation process, or other aspects. 3) Af-
fected product identifies certain versions of software products
affected by vulnerabilities and software product components
that have problems. Product components can be environment
variables, certain modules, files, functions or executable files
in the software. When submitting a new CVE, the reporter
must provide the affected product and version as well as the
product supplier, so there will be no lack of such informa-
tion. 4) Attacker type is an abstraction of an attacker who
exploits a security vulnerability. As an optional field, the CVE
request site provides 5 selection mechanisms: Authenticated,
local, remote, physical, and context-sensitive. Although the
vulnerability discoverer can leave this field unspecified or
select other fields when submitting the vulnerability report,
they may mention the type of attacker in the vulnerability
description. 5) Impact represents what an attacker can achieve
by exploiting this vulnerability and the impact on software
products. The CVE request site provides 4 common choices:
Code execution, information leakage, denial of service, and
privilege escalation. This key aspect is a phenomenon that
is an external manifestation of security vulnerabilities and is
easy to be observed, so Impact is not missing much in the
vulnerability report. 6) Attack vector describes the method and
medium of exploiting the vulnerability. For example, to exploit
the vulnerability, a carefully crafted JPEG file must be opened,
or a malicious query path must be used.

III. APPROACH
A. Approach Overview

To complement the key aspects missing in CVE, we chose
SecurityFocus and IBM X-Force Exchange, which are widely
recognized by the industry. We crawled the relevant data from
the official websites of these databases. As shown in Fig. 2,
we convert these vulnerability descriptions into continuous
tokens and label these tokens. After extracting the vulnerability
description, we use the Skip-gram model to train the word

1021

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 05:07:23 UTC from IEEE Xplore. Restrictions apply.

embedding on the crawled vulnerability description corpus.
The output of the training word embedding is the word vector
dictionary of each word in the vocabulary of the crawled
vulnerability descriptions. After that, we used a customized
NER (Named entity recognition) method based on deep neural
networks to extract six key aspects of these databases: affected
product, vulnerability type, root cause, attacker type, attack
vector, and impact. Finally, we complete the CVE description
using key aspects missing from the CVE included in Securi-
tyFocus and IBM X-Force Exchange.

Security Vulnerability Dataset. The CVE list can be down-
loaded from the CVE official website [5]. The data of Secu-
rityFocus and IBM X-Force Exchange can also be obtained
from their official websites. Then we need to convert these
descriptions into continuous tokens and label them. The CRF
(Conditional Random Fields) layer can add some constraints
to the last predicted label to ensure that the predicted label is
legal. In the training process of training data, these constraints
can be automatically learned through the CRF layer. These
constraints can be: /) The first word in the six key aspects
always starts with the label “B-", and “I-” indicates the middle
word. 2) For labels “B-labell I-label2 I-label3 I-...”, labell,
label2, label3 should belong to the same type of entity. For
example, “B-Impact I-Impact” is a legal sequence, but “B-
Impact I-Attack_vector” is an illegal tag sequence. 3) The
token label that does not belong to the six key aspects
is always “O”. In this work, we randomly selected 3,000
vulnerability entries from the vulnerability database released
from January 1999 to November 2020. We convert those data
into a continuous sequence and then label them.

B. Key Aspects Extraction

1) Input and Representation: From the perspective of the
model, the named entity recognition (NER) [10] problem is
actually a sequence labeling problem. The sequence labeling
problem means that the input of the model is a sequence,
including text, time, etc., and the output is also a sequence. For
each unit of the input sequence, a specific label is an output.
Tokens in vulnerability description are discrete symbols that
need to be represented as vectors in NLP tasks. Inspired by
many successful applications of word embedding in general
and domain text [11]-[13], word embedding is a real-valued,
low-dimensional word vector that captures lexical rich syntac-
tic and semantic characteristics, so we decided to use word
embedding to represent tokens in vulnerability descriptions.

Our corpus has the vocabulary size of 62,245. Continuous
Skip-gram model learns word embeddings that are good at
predicting the surrounding words with a center word. The
objective function of the model is to maximize the sum of
log probabilities of the surrounding words w;; in a context
window of size 2k + 1 (kK = 5 in this work) conditioned on
the center word w; in the window.

The output of the continuous Skip-gram model is a dic-
tionary of words. Each word is associated with a vector
representation w € R? where d is the word embedding
dimension. Following the experiments on word embedding

1022

CRF layer

BiLSTM
output

Char repre—
sentation

Yord
embedding

Fig. 3: Neural network model structure

dimension in Han et al. [11], we set d at 100 in this work.
The words in the dictionary may not cover all words in the
vulnerability description. We follow the common practice to
deal with those out-of-vocabulary words [12], i.e., randomly
initialize the corresponding word vectors.

2) Customized NER based on Deep Learning: The vul-
nerability description is concise, but the scope contains rich
and diverse vulnerability semantic information. In addition,
considering that some special symbols also have certain se-
mantics, it will increase the complexity of feature extrac-
tion. Our task requires a complete sequence function. Since
the vulnerability description usually contains 1-2 sentences
with rich information, we leverage BiLSTM (Bidirectional
LSTM)+CharCNN+CRF (Conditional Random Field) to cap-
ture the structure and characteristics of the various information
we need. The vulnerability description token sequence is
given. First, our method finds the vector describing each tag
in the sentence in the word embedding dictionary, and then
connects it to the vulnerability description vector.

Neural network has become a model that can effectively
handle many NLP tasks. We convert the security vulnerability
description information extraction into a sequence labeling
task. The label is mapped from a discrete one-hot represen-
tation to a low-dimensional space and then the embedded
sentence sequence is input to BiLSTM, and then the neural
network automatically extracts the features and uses Softmax
to predict each token label.

As shown in Fig. 3, we trained a BILSTM+CharCNN+CRF
model to solve the sequence labeling problem in the key
aspects of CVE description. We perform batch training. The
length of the word vector is 100, the BiLSTM layer is 1, the
learning rate is set to 0.012, and the subnet parameters are
updated by using the Adam optimization method [14]. We
convert the labeled CVE description into a word sequence
(including words, hollow Brackets, parentheses, dots, etc.), and
then mark each unit in the sequence according to the extracted
CVE information. We conducted several experiments to study
the performance of the proposed BiLSTM+CharCNN+CRF
architecture and compared it with other baseline methods.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 05:07:23 UTC from IEEE Xplore. Restrictions apply.

We highlight that CharCNN can capture character-level
features well. In this work, CharCNN includes a character
representation layer, a maximum pooling layer, a convolutional
layer and a Char Embedding layer. Taking as input the
word embedding representation of a vulnerability description
D (w1, wa, -+ ,wy), Where w; is the word embedding
of the i¢th word and n is the total number of words in the
description, a standard LSTM recursively computes a hidden
vector sequence h = (hy,hs, -+ ,h,) in one direction. A
Bi-directional LSTM processes the input sequence in both
forward and backward direction with two standard LSTMs,
respectively. In this work, we develop a BiLSTM with c
(c =100) LSTM cells which contain a forward LSTM [stm ¢
network that reads the input from w; to w,, and a backward

=TS]

LSTM %b that reads from w,, to wq: h; = Istmy(w;),i €
[1,n] ,ﬁi S Rc,_iﬁz = ??mb(wi),i € [TL7 1} 7<Ei € R¢. The
parameters of [stm and %b will be learned during model
training. We obtain the hidden vector h; for a given word w; by
concatenating the forward hidden vector h ; and the backward
hidden vector h,, ie., hi = h; ® h; (h; € R3°). h; is the
output vector of the BiLSTM for the input word w;, which
encodes both the preceding and succeeding sentence context
centered around w;. The CRF layer can add constraints to the
last predicted label to ensure that the predicted label is legal.
In the training process of training data, these constraints can
be automatically learned through the CRF layer.

Finally, we can automatically mark a continuous sequence
belonging to each key aspect in a vulnerability description,
thereby extracting key aspects from the vulnerability.

IV. EXPERIMENTS

We conduct a series of experiments to answer to the
following three research questions:

RQ1: (Efficiency of neural network): How do different
model architectures and neural network designs affect the
extraction performance of key aspects?

RQ2: (Key aspects missing from the security vulnera-
bility databases): How many key aspects are missing from
CVE, SecurityFocus, and IBM X-Force Exchange? How
many key aspects are missing in the augmented CVE?
RQ3: (Advantages of CVE augmentation): Does the
augmentation in key aspects enhance the prediction accuracy
of the severity of security vulnerabilities?

A. Experiment Setup

1) Evaluation Metrics: We use Precision, Recall, and F1-
score that are commonly used to evaluate the effectiveness of
multi-class classification in the literature. In the exact matching
process, the entity category and boundary range need to be
predicted. Only when these two parts are matched successfully,
the prediction is correct, otherwise, it is a prediction error.
Since Fl-score conveys the balance between the precision and
the recall, we use F1-score as the main evaluation metric.

1023

TABLE I: Performance on CVE

Affected Vulnerability Root Attack Attacker
Impact
product type cause vector type
1-L BiLSTM+CRF 0.9239 0.8177 0.9598 0.9291 0.7218 0.9010
2-L BiLSTM+CRF 0.9230 0.8242 09592 0.9311 0.7576 0.9026
Pre 1-L BiLSTM 0.8101 0.5230 0.8328 0.7205 0.5085 0.8042
1-L BiLSTM+CNN 0.8278 0.5490 0.8203 0.8611 0.5612 0.8102
1-L BILSTM+CNN+CRF 0.9317 0.8533 0.9549 0.9151 0.7250 0.8923
1-L BiLSTM+CRF 0.9724 0.8632 09593 0.9221 0.9385 0.9690
2-L BiLSTM+CRF 0.9771 0.8411 09674 0.9210 0.9221 0.9662
Rec 1-L BiLSTM 0.9209 0.6886 0.8232 0.8312 0.8607 0.9669
1-L BiLSTM+CNN 0.9316 0.7215 0.8483 0.9123 0.8648 0.9655
1-L BILSTM+CNN+CRF 0.9766 0.8862 0.9774 0.9221 0.9508 0.9711
1-L BiLSTM+CRF 0.9495 0.8445 0.9596 0.9259 0.8165 0.9338
2-L BiLSTM+CRF 0.9493 0.8326 09632 0.9260 0.8218 0.9333
F1 1-L BiLSTM 0.8620 0.6147 0.8280 0.7719 0.6393 0.8781
1-L BiLSTM+CNN 0.8767 0.6239 0.8341 0.8860 0.6806 0.8810
1-L BILSTM+CNN+CRF 0.9536 0.8694 0.9660 0.9186 0.8227 0.9324
TABLE II: Performance on SecurityFocus
Affected Vulnerability Root Attack Attacker
Impact
product type cause vector type
1-L BiLSTM+CRF 0.9365 0.9410 0.9372 0.8500 0.7500 0.9728
2-L BiLSTM+CRF 0.9346 0.9399 0.9269 0.8395 0.5116 0.9790
Pre 1-L BiLSTM 0.9184 0.8221 09111 0.6739 0.4043 0.9284
1-L BiLSTM+CNN 0.9309 0.8329 0.8856 0.6865 0.6000 0.9496
1-L BILSTM+CNN+CRF 0.9245 0.9067 0.9220 0.8831 0.6757 0.9647
1-L BiLSTM+CRF 0.9819 0.9381 0.9586 0.9067 0.7500 0.9699
2-L BiLSTM+CRF 0.9839 0.9428 0.9710 0.9067 0.7857 0.9849
Rec 1-L BiLSTM 0.9758 0.9074 0.9545 0.8267 0.6786 0.9759
1-L BiLSTM+CNN 0.9778 0.9257 09572 0.8633 0.7500 0.9639
1-L BiLSTM+CNN+CRF 0.9879 0.9598 0.9793 0.9067 0.8930 0.9880
1-L BiLSTM+CRF 0.9587 0.9395 0.9478 0.8774 0.7500 0.9713
2-L BiLSTM+CRF 0.9566 0.9414 0.9484 0.8718 0.6197 0.9820
F1 1-L BiLSTM 0.9462 0.8589 0.9323 0.7425 0.5067 0.9515
1-L BiLSTM+CNN 0.9538 0.8768 0.9321 0.7556 0.6667 0.9567
1-L BILSTM+CNN+CRF 0.9552 0.9323 0.9498 0.8947 0.7692 0.9762

2) Setting of Model Training: We implement the pro-
posed neural network in TensorFlow. All security vulnerability
databases are trained by using the proposed model. Specif-
ically, we train each model for 256 iterations with a batch
size of 128, set learning rate at 0.0012, and use Adam [14] as
the optimizer. All experiments run on an NVIDIA Tesla M40
GPU machine.

B. Efficiency of Neural Network

Motivation. Extracting the key aspects of vulnerability de-
scriptions is the first step in our work, which is very important
for the next experiments. We want to explore the influence
of different neural network models on the extraction of key
aspects of vulnerability in order to find the model that is
most suitable for our work. We also want to know the impact
of CharCNN, CRF, and BiLSTM layers on our NER based
network. For the three vulnerability databases, the impact of
the model may also be different. We want to study the impact
of these design schemes and combine their performance on the
three vulnerability databases to determine the most effective
design of the neural network.

Approach. For each key aspect of the three security vul-
nerability databases, we use five different models to explore
the impact of models on our work. We conduct a series of
comparative experiments (see in Table I-III) to explore the
number of BILSTM layers, whether there is a CharCNN
layer, whether there is a CRF layer, and the effect of layer
combination. We apply these neural network models to the key

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 05:07:23 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Performance on IBM X-Force Exchange

Affected Vulnerability Root Attack Attacker

product Tmpact type cause vector type

1-L BiLSTM+CRF 0.9242 0.8904 09135 0.7392 0.8613 0.8098

2-L BiLSTM+CRF 0.9211 0.8895 09133 0.7639 0.8615 0.8009

Pre 1-L BiLSTM 0.8490 0.8206 0.8419 0.6019 0.8013 0.7398
1-L BiLSTM+CNN 0.8996 0.8804 0.8711 0.7025 0.8214 0.7816

1-L BiLSTM+CNN+CRF 0.9351 0.8911 09103 0.7401 0.8496 0.8178

1-L BiLSTM+CRF 0.9778 0.9197 0.9483 0.8648 0.9394 0.8697

2-L BiLSTM+CRF 0.9770 0.9267 0.9459 0.8673 0.9403 0.8529

Rec 1-L BiLSTM 0.9150 0.8665 0.8568 0.7673 0.8411 0.7726
1-L BiLSTM+CNN 0.9450 0.8999 0.9059 0.8197 0.8703 0.8236

1-L BILSTM+CNN+CRF 0.9650 0.9199 0.9446 0.8471 0.9303 0.8726

1-L BiLSTM+CRF 0.9550 0.9016 0.9263 0.7863 0.9003 0.8326

2-L BiLSTM +CRF 0.9515 0.8976 ~ 0.9233 0.7773 0.9007 0.8301

Fl1 1-L BiLSTM 0.8680 0.8371 0.8462 0.6671 0.8295 0.7519
1-L BiLSTM+CNN 0.9330 0.8899 0.8863 0.7254 0.8602 0.8042

1-L BiLSTM+CNN+CRF 0.9511 0.9023 0.9259 0.7773 0.9003 0.8376

aspects extraction work of the three vulnerability databases.
CharCNN is an effective method to extract information (such
as the prefix or suffix of a word) from the characters of the
word and encode it into a neural representation.

Results. As shown in Tables I-III, we can see that our NER
model achieves great performance, and the model with the best
comprehensive effect is 1-layer BiLSTM+CharCNN+CRF.
The output of BIiLSTM is connected to the input of the
CREF layer. Unlike models that can consider long-term context
information (such as LSTM), CRF pays more attention to the
linear weighted combination of local features of the entire
sentence (scanning the entire sentence through a feature tem-
plate). In order to train the neural network model to extract the
features of related sequences from the vulnerability description
sequence and accurately label the sentence sequence, we
input a large number of crawling vulnerability description
sequences and the corresponding label of each tag in the
sequence into the model. The CRF model has obviously
improved the effectiveness of predicting relatively inaccurate
aspects, and the CharCNN model also has a good effect
on feature extraction. The addition of the BiLSTM model
has a counterproductive effect. Our model is relatively weak
in predicting the Attack vector in CVE and SecurityFocus,
Impact in CVE, and Root cause in SecurityFocus. In other
key aspects, our model achieves significant performance.

C. Key Aspects Missing from Security Vulnerability Databases

Motivation. Understanding the key aspects of security vul-
nerability descriptions is a prerequisite for our other security
vulnerability research work. The vulnerability description in
the security vulnerability database is mainly composed of
six key aspects: affected product, vulnerability type, root
cause, attacker type, attack vector, and impact. The key aspect
missing from the vulnerability description is the premise to
help us understand the advantages and disadvantages of the
security vulnerability database. We want to explore how many
key aspects are missing from CVE, SecurityFocus, and IBM
X-Force Exchange, and how many key aspects of CVE after
augmentation are missing. In this RQ, we want to understand
the degree of missing in each security vulnerability database
and the augmented CVE.

1024

TABLE IV: Missing aspects in the security vulnerability databases

Affected Vulnerability Root Attack Attacker

product Tmpact type cause vector type

CVE - 0.06 0.56 085 038 0.36
SecurityFocus - 0.02 0.23 0.58 0.83 0.55
IBM X-Force Exchange - 0.02 0.21 0.51 0.31 0.33
Augmented CVE - - 0.17 031 0.23 0.19

Approach. We categorize the description data in the three
vulnerability databases according to the corresponding vul-
nerabilities to facilitate our completion of CVE and statistics-
related information. After extracting the key aspects from the
three vulnerability databases, the number of key aspects in the
three vulnerability databases and the percentage of missing
key aspects are calculated. We use the data extracted from the
other two databases to complete the missing key aspects of
CVE, and in this case, calculate the missing rate and number
of key aspects again on the completed CVE data set.

Results. As shown in Table IV, in CVE, SecurityFocus, IBM
X-Force Exchange, there is almost no missing of affected
product information, and the missing rate of Impact is rela-
tively small. The difference is that for the vulnerability types,
there are more missing rate in the CVE database, reaching
56%, while relatively few in IBM X-Force Exchange and
SecurityFocus, about 23% and 21%, respectively. For attack
vectors, SecurityFocus loses the most, reaching 83%, while
the attacker type is also as high as 55%. In general, the lack
of CVE data is obviously alleviated after completion. After the
completion, there are basically no missing cases in the impact.
Compared with the previous 56% and 85%, the vulnerability
type and root cause missing rate after the completion are
reduced to 17% and 31%.

D. Advantages of CVE Augmentation

Motivation. Han et al. [11] proposed a neural network-based
model to predict the severity of vulnerabilities. The input of the
prediction model is the description of the vulnerability, and the
output is the corresponding severity of the vulnerability. For a
long time, we have been exploring the impact of augmentation
of key aspects on other security vulnerability research work.
Does the augmentation in key aspects enhance the prediction
of the severity of security vulnerabilities? Combining the
comprehensive factors of all aspects, if we want to further
study this aspect, we need to conduct a series of experiments
to solve this problem. In this RQ, we want to know how
the lack of vulnerability information affects the prediction of
vulnerability severity.

Approach. In order to verify the impact of the lack of key
aspects on predicting the severity of CVE, we designed 8
experiments, which were used in ablation studies. In this RQ,
a certain aspect of ablation means that we completely ignore
the ablation aspect in the input stage of the model, even if the
CVE describes the ablation aspect, as shown in Fig. 4. We use
the method proposed by Han et al. [11] to predict the severity
level of security vulnerabilities. We use 1 layer CNN as the
neural network model for this prediction work and divide the
vulnerability severity into four levels: low, medium, high, and

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 05:07:23 UTC from IEEE Xplore. Restrictions apply.

TABLE V: Performance on vulnerability severity prediction

Augmented Original Ablation of Ablation of Ablation of Ablation of Ablation of Ablation of
CVE CVE affected product impact Vul-Type root cause attack vector attacker type

0.796
0.795
0.792

0.747
0.749
0.745

0.681
0.688
0.682

0.711
0.720
0.713

0.729
0.728
0.723

0.735
0.729
0.726

Information Disclosure Vulnerability in Opera 9.64 _
allows remote attackers to cause a
denial of service (application crash)

0.715
0.715
0.712

0.710
0.709
0.703

Pre

F1

Augmented CVE-2009-1234

Opera 9.64 allows remote attackers to cause a denial of service
(application crash)

Original CVE-2009-1234
Opera 9.64 allows to cause a denial of service (application crash) -
an XML document containing a long series of start-tags with nol
corresponding end-tags.
Ablating attacker type in CVE-2009-1234
Fig. 4: Data comparison

critical. The input of the prediction model is the description
of the CVE vulnerability, and the output is the severity level
of the vulnerability. We cut out six key aspects in the CVE
data set one by one to predict the severity of CVE and observe
the impact of the lack of each key aspect on the prediction
work. In addition to those six data sets, there are the original
CVE data set and the expanded CVE data set. We use the
control variable method to compare the experiments on the
other seven data sets with those on the original CVE data set.
We use the augmented CVE data set to predict the severity
of the vulnerability to verify the practicability of our method.
We perform 10-fold cross-validation in all experiments.

Results. Table V shows our experimental results. We can
see that the vulnerability information completion can improve
the prediction of vulnerability severity level, up about 4.7%.
Ablating root cause results in a relatively smaller drop (about
1.9%) in F1. For predicting vulnerability severity, ablating
affected product have the most significant impact, resulting
in a 6.3% drop in F1. Other aspects of ablation decreased
by approximately 2.2%-4.2%. It can be seen from the results
that our work does have an impact on the prediction of CVE
severity grade, and has a good promotion effect.

V. RELATED WORK

Neural networks have been widely-used in natural language
processing [15]. A lot of research have been done in predicting
vulnerable or error-prone components [16], or assessing how
the system is more vulnerable [17]. They used various features,
including software indicators, developer activity indicators,
and code structure [18]. The difference in our work is that we
analyze the vulnerability text and understand the relationship
between different aspects in the vulnerability description.

VI. CONCLUSION

This paper studies the information integrity issues in the
vulnerability reports. We separately checked the severity of six
key aspects missing from the description of CVE, SecurityFo-
cus, and IBM X-Force Exchange: statistical affected product,
root cause, vulnerability type, attacker type, attack vector, and

1025

impact. We proposed a customized NER method based on
deep neural networks to extract key aspects of vulnerability
descriptions and mitigate the missing information in the CVE
vulnerability reports. This method uses a neural network model
to extract important features from the aspect description and
captures the differences in various aspects of the vulnerability
descriptions. Our experiments have determined the most effec-
tive model design for the prediction tasks. We conclude that 1
layer BILSTM+CharCNN+CRF achieves a better performance
in the alternative scheme. We believe that our method has the
ability to effectively reduce human efforts and time cost during
the updating iterations among different vulnerability databases
and facilities the vulnerability description-based works in the
future.

ACKNOWLEDGMENT

This work has partially been sponsored by the National
Science Foundation of China (No. 61872262).

REFERENCES

[1] S. Chen, L. Fan, G. Meng, T. Su, M. Xue, Y. Xue, Y. Liu, and L. Xu,
“An empirical assessment of security risks of global Android banking
apps,” in ICSE. IEEE Press, 2020.

S. Chen, T. Su, L. Fan, G. Meng, M. Xue, Y. Liu, and L. Xu, “Are
mobile banking apps secure? what can be improved?” in ESEC/FSE.
ACM, 2018.

X. Zhan, L. Fan, S. Chen, F. Wu, T. Liu, X. Luo, and Y. Liu, “Atvhunter:
Reliable version detection of third-party libraries for vulnerability iden-
tification in android applications,” in ICSE. IEEE Press, 2021.

Z. Tang, K. Tang, M. Xue, Y. Tian, S. Chen, M. Ikram, T. Wang, and
H. Zhu, “i0S, your OS, everybody’s OS: Vetting and analyzing network
services of i0S applications,” in USENIX Security, 2020.

C. MITRE, “Common vulnerabilities and exposures (cve),” https://cve.
mitre.org/, 2019, [Online; accessed 30-June-2019].

, “National vulnerability database (nvd),” https://nvd.nist.gov/,
2017, [Online; accessed 21-January-2017].

IBM, “Ibm x-force exchange,” https://exchange.xforce.ibmcloud.com/,
2019, [Online; accessed 30-June-2019].

Symantec, “securityfocus,” https://www.securityfocus.com/, 2019, [On-
line; accessed 30-June-2019].

CWE, “Common weakness enumeration (cwe),” http://cwe.mitre.org/,
2019, [Online; accessed 30-June-2019].

G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer,
“Neural architectures for named entity recognition,” in North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, 2016.

Z. Han, X. Li, Z. Xing, H. Liu, and Z. Feng, “Learning to predict
severity of software vulnerability using only vulnerability description,”
in ICSME, 2017.

X. Gong, Z. Xing, X. Li, Z. Feng, and Z. Han, “Joint prediction of
multiple vulnerability characteristics through multi-task learning,” in
ICECCS, 2019.

L. Yuan, Y. Bai, Z. Xing, S. Chen, X. Li, and Z. Deng, “Predicting entity
relations across different security databases by using graph attention
network,” in In COMPSAC, 2021.

D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, 2014.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, “Deep contextualized word representations,” in CoRR,
vol. abs/1802.05365, 2018.

S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting
vulnerable software components,” in CCS, 2007.

L. Wang, T. Islam, L. Tao, A. Singhal, and S. Jajodia, “An attack
graph based probabilistic security metric,” in Lecture Notes in Computer
Science, 2008.

Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indicators of
software vulnerabilities,” in TSE, 2011.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 05:07:23 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T20:27:55-0400
	Preflight Ticket Signature

